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Abstract. The ability to learn from experience is central to an organization’s performance.
A set of qualitative management studies argues that learning from failure is the excep-
tion rather than the rule. Another literature, using econometric methods, finds strongly
statistically- and economically-significant effects. There are many possible explanations
for this discrepancy, but we argue that one contributor is that a problem with one of the
standard empirical approaches to identifying learning from failure may result in erro-
neously significant results. We generate simulated placebo data in which no learning takes
place and show that the standard approach yields strong significant results. We provide
a simple example that provides intuition for why this might be. We then propose and
implement improved specifications using data on liver transplantation and find no direct
evidence of learning from failure.

History: This paper has been accepted for the Strategy Science Special Issue on Evolutionary Perspectives
on Strategy.
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Introduction
Practitioners and scholars have suggested that one sig-
nificant determinant of an organization’s future perfor-
mance is its ability to learn from prior failures (Argote
et al. 1990, Henderson 1974, Pisano et al. 2001). Results
on how common it is to successfully learn from failure,
however, are mixed.
Literature using archival data largely finds evidence

of learning from failure. Studying the satellite launch
industry, Madsen and Desai (2010) find that the prob-
ability of a successful future launch increases with the
cumulative number of failed launches.1 Both Audia
and Goncalo (2007) and Baum and Dahlin (2007)
find correlations consistent with cumulative past suc-
cesses driving organizations’ local search for minor
performance improvements, and with cumulative past
failures leading organizations to search beyond their
boundaries for new ideas. Li and Rajagopalan (1997)
also find evidence indicating that learning from fail-
ure improves quality more than does learning from
success.
Results from qualitative fieldwork, on the other

hand, suggest that almost any result on learning from
failure is surprising. Edmondson (2011) writes:

When I ask executives to [. . .] estimate how many of the
failures in their organizations are truly blameworthy,
their answers are usually in single digits—perhaps 2%
to 5%. But when I ask how many are treated as blame-
worthy, they say (after a pause or a laugh) 70% to 90%.
The unfortunate consequence is that many failures go
unreported and their lessons are lost.

Edmondson suggests that organizations that learn
from failure are the exception rather than the norm.
Furthermore, Tucker and Edmondson (2003, p. 56),
write:

We conducted a detailed study of hospital nursing care
processes to investigate conditions under which nurses
might respond to failures they encounter in their hospi-
tal’s operational processes by actively seeking to prevent
future occurrences of similar failures. Our research sug-
gests that, in spite of increased emphasis on these issues,
hospitals are not learning from the daily problems and
errors encountered by their workers. We also find that
process failures are not rare but rather are an integral
part of working on the front lines of health care delivery.

This suggests a tension between the archival litera-
ture’s findings that failure is an important source of
future performance improvement and the qualitative
literature’s suggestion that it is only the rare organiza-
tion that learns from failures.

There are many possible reasons for the disagree-
ment about likelihood of learning. We suggest that one
reason is that previously unknown issues with a stan-
dard empirical specification—regressing probability of
success on both the cumulative number of successes
and the cumulative number of failures to date—can
erroneously yield evidence of learning where none
exists.

Seeking to resolve the tension, we start by examining
how the common empirical specifications in the litera-
ture on learning from failure perform using randomly
generated data, which, by definition, should show
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absolutely no effects of learning.2 For these placebo
data sets, we find that using the common empiri-
cal specifications in the literature systematically forces
strongly significant evidence of learning from failure
even though no such learning exists.
We describe two issues with the standard specifica-

tion that are responsible for the erroneous results. The
first is a mechanical relationship that can bias the coef-
ficient, forcing it to deviate from zero on even random
data where it should be zero. The second is a problem
known in the econometrics literature as the “unit root
problem,” which can bias significance tests towards
suggesting significance too often. While it is beyond
the scope of our paper to replicate each study indi-
vidually, our simulation results suggest caution when
interpreting the prior literature’s associations.

We go on to (a) suggest an alternate specification for
studying learning from failure, and (b) demonstrate
this in the context of liver transplantation.

Our approach investigates the effect of a surgery
outcome on the next few surgeries, rather than using
cumulative counts.3 We show that this specification
correctly yields no result on placebo data with no
learning and the correct result on simulated data with
learning. We then illustrate the technique on data from
liver transplantation surgeries and find little evidence
of any learning from failure. In fact, we find that, in
some specifications, a prior surgical failure is positively
correlated with the chance of a future failure. This
stands in stark contrast to the findings of much of the
previous literature.
In the next section, we describe the problems with

the standard specification. In the third section, we
describe our proposed tests of learning from failure
and implement them using data on liver transplant
surgeries.

Standard Specification for Studying
Learning from Failure
Many of the studies attempting to decompose learning-
by-doing into learning-from-failure and learning-
from-success have used similar empirical models. The

Table 1. A Sample of the Prior Literature

Paper Journal Setting Variables included Dependent variable

Baum and Dahlin (2007) Organization Science Railroads Logged operating
experience and logged
accident experience

Accident cost per
operating mile

Madsen and Desai (2010) Academy of Management
Journal

Satellites Cumulative successes and
cumulative failures to
date

Launch failure [0,1]

Staats and Gino (2013) Management Science Heart surgeons Cumulative successes and
cumulative failures to
date

Surgery outcome [0,1]

Haunschild and Sullivan
(2002)

Administrative Science
Quarterly

Commerical airlines Prior accidents and airline
age

Number of accidents and
incidents per 100 k
departures

standard practice is to model yi , t , which is the like-
lihood of failure of a certain practice at time t for a
given organization or individual i, as a function of the
cumulative number of successes to date, the cumula-
tive number of failures to date, a set of controls, and a
random-error term ei , t :

yi , t � α+ β
t−1∑
s�1

yi , s + γ
t−1∑
s�1
(1− yi , s)+ ηXi , t + ei , t . (1)

Some studies include subtle variations with some
of the same mathematical properties. For example,
instead of including the count of failures to date,
some studies include the sum of losses due to fail-
ures, which would be very highly correlated with
the count of failures. Others include years of oper-
ating experience—which is very highly correlated to
the linear combination of cumulative successes and
failures—instead of using a count of cumulative suc-
cesses or failures. Table 1 lists a few example papers,
from a selection of strategy journals, using similar
specifications.

In the specification from Equation (1), β is to be inter-
preted as the marginal increase in the likelihood of
success at time t as a function of an additional suc-
cess before time t − 1. Similarly, γ is interpreted as
the marginal increase in the likelihood of success at
time t due to an additional failure before time t − 1.
If β , γ, that suggests that practitioners learn differ-
entially more from successes than from failures, or
vice versa. For example, Staats and Gino (2013) sug-
gest that practitionersmight learnmore from their own
successes than from their own failures, in which case
β > γ.
The logic of the existing models is compelling, but

it is unclear whether the results of existing empirical
analyses are due to real learning from failure in the
underlying data or from issues induced mechanically
in the standard model.

The standard model has two issues that could yield
the observed results even if the relationships were
not present in the underlying data. The first problem,
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which to the best of our knowledge has not been
explored, is a mechanical relationship that can all but
guarantee that the estimated effect of prior failures on
likelihood of failure is positive. The second problem
is known in the econometrics literature as the “unit
root problem” (Hamilton 1994). Algebraically, estimat-
ing the standard model is equivalent to estimating a
model with a random walk as one of the independent
variables. When an independent variable is a random
walk, t ratios will no longer be distributed t under the
null hypothesis. In practice, what happens is that even
with no learning, the t statistics on prior successes and
failures will not be mean zero over a large number of
random populations.
Next, we describe the two problems and then esti-

mate the standard model on randomly generated
placebo data with no learning—including learning
from failure—by definition. We find that the two prob-
lems lead us to results with strength comparable to that
found in the literature.

Simulated Data with No Learning
We begin by generating a placebo data set, which, by
definition, has no learning. Figure 1 presents an exam-
ple of data from the general processwe used.4 Webegin
by generating 1,000 observations yt , which are equal to
1 if there is a failure and 0 otherwise. We set the failure
probability at 1% to parallel our results from the liver
transplant market. This means that for any given ran-
dom data set, there are, on average, 990 successes and
10 failures. In Figure 1, there are six failures. For each
observation, we calculate the cumulative sum of suc-
cesses and failures to date.5 The top panel of Figure 1
depicts all 1,000 observations of one simulated data set
plotted. The bottom panel shows the first 20 observa-
tions in a table, to show how the data is constructed.
For any time t, there are three variables: Cumulative
prior failures, which is the sum of all failures through
t − 1; Cumulative prior successes, which is the sum of all
successes through t − 1; and Failure, which equals 1 if
the event is a failure and 0 otherwise.

The Induced Slope Effect
Consider the standard model:

Failuret � α+ β1 · (Cumulative number of successes)t−1

+ β2 · (Cumulative number of failures)t−1

+ et . (2)

Although it is in no way obvious at first glance, the
structure of this standard model mechanically induces
results, meaning that a deterministic linear relation-
ship between the left and right sides of the equa-
tion constrain the coefficients’ signs, regardless of the
underlying data. We illustrate this using the simulated
data from the Simulated Data with No Learning section.
To begin, recall that the placebo data are constructed

such that there should be no correlation between

Figure 1. Example of One Realization of Placebo Data
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Attempt number

Coding of variables for first 20 observations from Figure 1

Cumulative Cumulative Cumulative
prior prior prior Prior attempt

Attempt Failure attempts sucessess failures failure

1 0 0 0 0 0
2 0 1 1 0 0
3 0 2 2 0 0
4 0 3 3 0 0
5 0 4 4 0 0
6 0 5 5 0 0
7 0 6 6 0 0
8 0 7 7 0 0
9 0 8 8 0 0
10 0 9 9 0 0
11 1 10 10 0 0
12 0 11 10 1 1
13 0 12 11 1 0
14 0 13 12 1 0
15 0 14 13 1 0
16 0 15 14 1 0
17 0 16 15 1 0
18 0 17 16 1 0
19 0 18 17 1 0
20 0 19 18 1 0

cumulative experience and probability of failure. Col-
umn 1 of Table 2 confirms this is the case.

Despite the data being constructed to represent no
actual learning, column 2 of Table 2 shows strong sig-
nificant results on Cumulative number of successes and
Cumulative number of failures.

To clarify the intuition, we describe an analogous
model and then show how it is related. Instead of mod-
eling the effect of cumulative prior failures on prob-
ability of a current failure, consider a nonparametric
model with (a) a dummy for each of the possible num-
bers of failures to date, and (b) the interactions between
those dummies and the number of failures:

Failuret � α+ β1 · (Cumulative successes)t−1

+ β2, 1 · (One cumulative failure)t−1

+ β2, 2 · (Two cumulative failures)t−1 + · · ·
+ β3, 1 · (Cumulative successes)
× (One cumulative failure)t−1 + · · ·+ et . (3)
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Table 2. Regression Results Run on Placebo Data from
Figure 1

Dependent variable: Failure� 1

Independent variable (1) (2) (3)

Intercept 0.009399 0.045401 0.090264
(0.006106) (0.020455)∗∗ (0.08691)

Cumulative number 0.000007 0.00014 0.00013
of successes (0.00001) (0.00006)∗∗ (0.00006)∗∗

Cumulative number −0.03107
of failures (0.01367)∗∗

Cumulative number −0.08347
of failures� 1 (0.08794)

Cumulative number −0.10516
of failures� 2 (0.08766)

Cumulative number −0.13228
of failures� 3 (0.08950)

Cumulative number −0.15856
of failures� 4 (0.09330)∗

Cumulative number −0.18946
of failures� 5 (0.09896)∗

Cumulative number −0.21436
of failures� 6 (0.10518)∗∗

Cumulative successes No No No
dummy variables

R2 0.0006 0.0197 0.0247
Observations 1,000 1,000 1,000

Note. Parentheses contain robust standard errors using simulated
data from Figure 1.
∗ and ∗∗indicate significance at the 10% and 5% confidence levels,

respectively.

Equation (3) makes the relationship of this model to
a standard fixed-effects model much clearer. Here, β3, 1
can be interpreted as the slope of the regression line
estimating the linear effect of successes on only those
observations for which there had been only one prior
failure.
Figure 2 shows these regression lines on different

“bins” of the data, where each bin is a set of observa-
tions that share the same number of prior cumulative
failures. Note that, by definition, in each bin, every
point until the last is a success and the last is a failure.
No more than one failure can be included or all of the
points would not share the same number of prior fail-
ures and thus would not share a slope. The last point
must be a failure because otherwise the points after it
would have the same number of prior failures as those
pictured. In fact, by definition, every bin’s regression
line except for the last must look the same: n successes
followed by one failure. The last bin will not have a
failure in it unless the last observation was a failure.
As one can see, a fit line in all but the last of those bins
will slope upwards. The fit line in the last bin, because
all points are successes, would have a slope of zero.
Column 3 of Table 2 shows the regression results

from the prior thought experiment.
To move from this analogue to the standard specifi-

cation, we need to recall the relationship between an

Figure 2. Intuition for the Induced Slope Effect
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Cumulative successes

Notes. Each line represents a separate regression of failure on cumu-
lative successes within each cumulative failure bin. For example, up
to and including the first failure, cumulative failure � 0. After the
first failure and up to and including the second failure, cumulative
failure � 1. Hence that is a separate bin. The slopes of all of these
lines will, by definition, be positive except for the last line, which will
have a slope equal to zero. The coefficient on cumulative success in
column 3 of Table 3 is the weighted average of each of these slopes.

aggregate linear effect over a set of subgroups and the
linear effects within the subgroups. Algebraically, the
slope of the line on the full sample must be a weighted
linear combination of the slopes of the lines on the sub-
set. In other words, the aggregate slope will be the sum
of each of the slopes of the sum lines multiplied by the
percentage of the observations that fall in its bin. A lin-
ear combination of a single zero and a set of positive
numbers must be positive. This means that regardless
of the process that generated these data, the standard
specification will always yield a mechanically induced
coefficient.

We have demonstrated the induced slope problem in
a simplified setting. The addition of other controls or
transformations of the data may weaken or break this
relationship, but demonstration of the problem urges
caution in the interpretation of the models that share
this general structure.

The Unit Root Problem
A second potential limitation of the standard speci-
fication is that in some settings, it may suffer from
a long-studied phenomenon known in time-series
econometrics as the “unit root problem” (Dickey and
Fuller 1979, Hamilton 1994). The fundamental under-
lying assumption in using t-tests on regression coef-
ficients is that, under the null hypothesis, the test
statistic converges in probability to some known distri-
bution. In the case of studying the effect of cumulative
success and cumulative failure on future performance,
that means that if many studies were conducted
on whether experience affects success—all using the
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same empirical specification—the regression coeffi-
cients from the studies would vary due to random-
ness. If the null hypothesis were true and experience
had no effect on chance of success, the assumptions of
ordinary least squares (OLS) would dictate that the t-
statistics computed from those statistics would be dis-
tributed t with the appropriate number of degrees of
freedom. It is necessary to know the distribution to
which those t-statistics would converge under the null
to know how unlikely it would be to get coefficients as
extreme as those observed if the null were true.

The unit root problem is that when one of the inde-
pendent variables has a unit root (for example, if it
has a random walk), t-statistics do not converge to the
expected distribution. When estimating models using
time-series data in which prior outcomes affect current
outcomes, the variance of current outcomes is, in some
part, due to the variance in prior outcomes. As long
as the effect of those prior outcomes dies out eventu-
ally, which happens when the coefficient on a lagged
variable is less than 1, the variance of coefficients is
stationary. Stationary variance is necessary for t-tests
to make sense. If those effects do not die out (mean-
ing that the coefficient on the lagged value is unity),
then the variance of the coefficient goes to infinity as T
increases. This, in turn, means that the distribution of
t-statistics would not converge to what we expect. This
means that t values greater than 1.96 occur more than
5% of the time. In fact, in our placebo data, they occur
closer to half the time.

The Unit Root Problem and the Standard Specifica-
tion. To see that the standard specification suffers from
the unit root problem, begin with Equation (1), the
assumed true data-generating process for a success yt
in the current period:

yt � α+ β
t−1∑
s�1

ys + γ
t−1∑
s�1
(1− ys)+ ηXt + et .

Then, demean both sums:

� α+ β

[ t−1∑
s�1
(ys − ȳ)+

t−1∑
s�1

ȳ
]

+ γ

[ t−1∑
s�1
(1− ys − (1− ȳ))+

t−1∑
s�1
(1− ȳ)

]
+ ηXt + et ;

� α+ β

[ t−1∑
s�1
(ys − ȳ)+ (t − 1) ȳ

]
+ γ

[ t−1∑
s�1
(1− ys − (1− ȳ))+ (t − 1)(1− ȳ)

]
+ηXt + et .

Now, define

zt ≡
t−1∑
s�1
(ys − ȳ)�

t−1∑
s�1

et

and substitute back into Equation (1):

yt �α+ (t−1)[β ȳ +γ(1− ȳ)]+ (β−γ)zt + ηXt + et . (4)

From Equation (4), we can see a potential challenge
with this specification. Note that zt is a random walk
and that, as described in Hamilton (1994, Section 17.1),
β − γ will not converge in distribution to a mean zero
normal. That also implies that neither β nor γ will con-
verge in distribution to a mean zero normal and that
standard t-tests for β̂ or γ̂ being different from zero
will not be appropriate. Most importantly, the conven-
tional critical values for judging statistical significance
will be wrong.

The unit root problem is less intuitive than the
induced slope effect, but the authors have found the
following intuition illuminating. Standard econometric
testing depends on creating estimators whose distribu-
tions, at least in the limit, are known. For example, if
we want to test the significance of a regression coeffi-
cient β̂, we convert it into the t-statistic t � β̂/SE. With
enough observations, it can be shown that the t, has
a distribution with 95% of its mass between roughly
1.96 and −1.96, under the null. That means that t val-
ues outside of that range are unlikely under the null—
specifically they occur less than 5% of the time. Thus,
central to econometric testing is the assumption that
we know to what distribution the statistic converges.

With a unit root process, each observation contains
the sum of its own ε and all the ones before it. Even
if the error terms εi are i.i.d., summing more of them
gives larger and larger variances, and thus the t statistic
does not converge to the t-distribution. The closest ana-
loguewe could construct is determiningwhetherwater
is boiling by checking its temperature in Fahrenheit,
against a Celsius chart. One could be correct, but there
is a large range of values for which one would not be
correct. We direct researchers who would like more
intuition about unit root processes and co-integration
to Murray (1994). Researchers whose primary con-
cern is not the statistics, but detecting whether their
data series may yield erroneous results, can apply
the Dickey-Fuller test (Dickey and Fuller 1979) (clearly
described in Hamilton 1994) to determine whether
their data series has a unit root, and thus whether a
first difference or sliding window specification should
be used instead of the standard specification.

Demonstrating the Unit Root Problem on Simulated
Data. To demonstrate the unit root problem in practice,
we return to Table 2, where we estimated Equation (2)
(reprinted here) on the placebo data:

Failuret � α+ β1 · (Cumulative number of successes)t−1

+ β2 · (Cumulative number of failures)t−1

+ et . (2)
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The way we have constructed the data, α � 0.01 and
β1 � β2 � 0. Note that in column 1, where only cumu-
lative successes are included, the estimated coefficient
is—correctly—a very precisely estimated zero. In col-
umn 2, using the standard specification, the coeffi-
cients are, as expected from the algebra in The Unit
Root Problem and the Standard Specification section, of
opposite sign.6 Note also that they are indicated as
statistically significant because the t-ratios are greater
than 1.96, despite the data being constructed in such a
way that these variables should not predict success. As
described in the previous subsection, this is because
the critical values used in conventional t-tests assume
that, under the null, the t-ratio will be distributed Stu-
dent’s t. Dickey and Fuller (1979), however, show that
the t-ratios from data-generating processes with unit
roots are not distributed Student’s t. Because the null
hypothesis of no correlation is true in our simulated
data, we can empirically illustrate this. To do so, we
perform 1,000 iterations of the data-generation and
regression described above and plot the t-ratios in Fig-
ure 3. Note that the bulk of the distribution occurs out-
side the conventional critical values. In fact, we can see
that a finding of zero would occur less than 1% of the
time. This means that with this specification, using the
conventional critical values will result in erroneously
interpreting coefficients as significant in many cases in
which they are not.7

Figure 3. (Color online) Distribution of t-Statistics on
Failure and Success Coefficients from 1,000 Randomly
Drawn Data Sets

� �

Notes. t-statistics for robust standard errors at the 95% confidence
interval shown. Dashed lines are ±1.96 standard deviations from the
mean. The number of observations in each data set equals 1,000.
These results follow from the specification:

(Die within a day of transplant)t � α+ β1 · (Cumulative successes)t

+ β2 · (Cumulative failures)t + εt

This closely follows column 2 of Table 2. The baseline probability
of failure is 1%, but this assumption is relaxed with little change
in Figure A.1 in the appendix. Figure A.2 increases the size of each
random data set; the size of the t-statistic does not change.

The unit root and induced slope problems combined
imply that estimating this model on arbitrary data will
(a) yield positive coefficients on cumulative successes,
and (b) suggest that those effects are significant more
liberally than expected. This does not imply that learn-
ing from failure does not exist, nor does it necessarily
refute studies that have found evidence of it. Those
studies all vary from the standard model in various
ways, and the transformations of variables or sets of
controls used may mitigate these two problems. But
our results on simulated data do serve as a caution
not to use specifications similar to the standard model
and to take care in interpreting results from studies
that do.

In the subsequent sections, we suggest alternate
methods for testing hypotheses about learning from
failure and apply them to data on the success and fail-
ure of liver transplant operations.

Demonstrating an Alternate Specification on
Simulated Data
The standard specification for studying learning from
failure yields biased results and erroneous signifi-
cance. In its place, we recommend a specification
including a sliding window of prior attempts rather
than the entire cumulative history, and a count of only
failures or success, and not both.

Failurei , t � α+ β1 ·
n∑

x�1
Failurei , t−x + ηXi , t + ei , t .

This approach mimics the first-differencing advocated
by the time-series literature (Hamilton 1994). The con-
stant length of history from using a sliding window
prevents the unit root issue. Using only failure or
success prevents induced slope problems. Figures 4
and 5 demonstrate the properties of this specification
on placebo data with no learning. To generate Fig-
ures 4 and 5, we generate 1,000 independent samples
of 1,000 random outcomes each, with a failure prob-
ability of 10%. On each sample, we estimate our rec-
ommended specification with a sliding window of five
trials. Figure 4 plots the kernel density of the t-statistics
on β1, which are much closer to the t distribution than
with the standard specification (Figure 3). Importantly,
the distribution of the t-statistics has its mean at zero,
as it should. Figure 5 shows the distribution of coeffi-
cients β1 themselves. As expected, the mean value of
the coefficient is zero, as opposed to the coefficients
under the induced slope effect (Table 2, column 2).

Figures 4 and 5 demonstrate that our recommended
specification does not generate the “false positives”
generated by the standard specification. Figure 6 and 7
demonstrate that the specification generates “true pos-
itives.” For Figures 6 and 7, we generate 1,000 inde-
pendent samples of 1,000 random outcomes each, with
a failure probability of 10% minus 1% per failure
in the last five outcomes. This represents short-lived
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Figure 4. Distribution of t-Statistics on Simulated Data With
No Learning (Placebo)
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Figure 5. (Color online) Distribution of Coefficient
Estimates on Simulated Data With No Learning (Placebo)
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learning from failures. Figure 6 depicts the distribu-
tion of t-statistics from our recommended specifica-
tion. The mean of the distribution of t-statistics is
greater than 1.96, meaning the coefficient is estimated
to be different from zero at greater than 95% con-
fidence. Figure 7 depicts the distribution of β1. The
estimated learning coefficient is, on average, the true
value of 1%.
Having demonstrated the properties of our recom-

mended specification on simulated data, we move on
to illustrating the specification using real world data
from surgical success in liver transplants.

Learning from Failure in Liver Transplants
Data Description
The United Network for Organ Sharing (UNOS) data-
base contains information on every liver transplant
performed in the United States since 1987. Uniquely,
it provides the exact date of transplant and date of
patient death. This allows us to calculate exact survival

Figure 6. Distribution of t-Statistics on Simulated Data with
Learning
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Figure 7. (Color online) Distribution of t-Statistics on
Simulated Data with No Learning (Placebo)
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rates and to control for a host of germane patient and
donor characteristics. Table 3 provides summary statis-
tics for survival rates and patient characteristics.

Since we know the day of any given transplant, we
knowwhether transplants that occurred the day imme-
diately prior at the same center were successful. Sup-
pose that, at a given center, a transplant occurred on
May 13, 2004 and the patient died within a day. If the
next transplant occurred on May 27, 2004, that May 13
surgery would be recorded as “Die within a day of
transplant.”8 Since these procedures can take up to
12 hours and we do not know the exact time of the
surgery, we codeDie within a day of transplant as 1 if the
social security master file death date for that patient is
equal to the day of transplant or the following day.

While ideally we would have physician-level data,
the records are only available at the center level.

Replicating Prior Results
In Table 4, we present the results from estimating the
standard specification on (a) placebo data generated to
replicate the setting and (b) the real UNOS data.
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Table 3. Summary Statistics for All U.S. Liver Transplants 1989–2011

Variable Observations Mean Standard deviation Min Max

Die within a day of transplant 111,719 0.0109 0.1037 0 1
Die within a week of transplant 111,719 0.0180 0.1331 0 1
Die within a month of transplant 111,719 0.0396 0.1949 0 1
Die within a year of transplant 111,719 0.1130 0.3166 0 1
Days until next transplant 111,690 8.7544 39.4158 1 6,967
Life support at transplant 111,719 0.1071 0.3093 0 1
Re-transplant 111,719 0.1025 0.3033 0 1
Living donor 111,719 0.0406 0.1973 0 1
Age 111,719 45.9371 17.9978 0 84
Age of donor 111,699 35.7637 18.5109 0 92
HCV 111,719 0.2686 0.4432 0 1
Alcoholic cirrhosis 111,719 0.1160 0.3203 0 1
HCC 111,719 0.0923 0.2894 0 1
White 111,719 0.7319 0.4430 0 1
African-American 111,719 0.0929 0.2902 0 1
Hispanic 111,719 0.1229 0.3284 0 1
Female 111,719 0.3790 0.4851 0 1

Notes. Data comes from the United Network for Organ Sharing. Hepatitis C virus (HCV) indicates primary cause of
liver failure is hepatitis C. Hepatocellular carcinoma (HCC) indicates that primary cause of liver failure is malignancy.
The large maximum value on days until next transplant is driven by centers that close. In our analysis we take logs of
this variable, which limits the impact of any one extreme value.

Columns 1 and 2 present the results where the
dependent variable is randomly generated for each
of the patients with a mean of 1.18%. Thus, by con-
struction, simulated patient deaths are uncorrelated
with patient or center characteristics. We iterate this
randomization 1,000 times and report the average
coefficients. These results are consistent with our prior
simulations: on randomly generated placebo data, we
find economically and statistically significant evidence
suggesting that cumulative past failures lead to future
performance improvement and that cumulative past
successes are associated with future failures.

In columns 3 and 4, we run the regressions using the
real data from the UNOS transplant database. We find

Table 4. Results on Placebo vs. Actual Transplant Data

Dependent variable: Die within a day of transplant

Placebo data Real data

Independent variable (1) (2) (3) (4)

Cumulative single day deaths −0.3488 −0.3493 −0.1726 −0.1764
(in 100s of patients) (0.0620)∗∗∗ (0.0620)∗∗∗ (0.0359)∗∗∗ (0.0370)∗∗∗
Cumulative single day survival 0.0040 0.0040 0.0018 0.0018
(in 100s of patients) (0.0008)∗∗∗ (0.0008)∗∗∗ (0.0006)∗∗∗ (0.0006)∗∗∗
Individual controls Yes Yes
Year effects Yes Yes Yes Yes
Center effects Yes Yes Yes Yes
Clusters 99 99 99 99
Observations 41,704 41,704 41,704 41,704

Notes. Parentheses contain standard errors clustered at the center level. Data comes from the United
Network for Organ Sharing for 1989–2011. Observations restricted to centers that started in 1989
or afterward to avoid left-hand-side censoring for the cumulative variables. Placebo data randomly
assigns the dependent variable with probability 1.18%, which is the overall probability that a patient
will die within one day for the subsample of centers that started in 1989 or afterward. This process
was iterated 1,000 times and the average parameter estimates and standard errors are in the first two
columns.
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% confidence levels, respectively.

that the parameters are approximately half the size of
the parameters of the simulated results, but still highly
significant. A naïve reading of these columns would
suggest that the real data shows important correlations
consistent with the prior literature. Knowing about the
induced slope and unit root problems, however, we
cannot tell whether these results are evidence of true
learning from failure or symptoms of mathematical
issues.

Demonstrating Our Recommended
Specification on Real Data
Table 5 shows the results of our first suggested empir-
ical approach to solving the learning-from-failure
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Table 5. Learning from the Previous Transplant

Die within a day of transplant Die within a week Die within a month Die within a year
Independent variable (1) (2) (3) (4) (5)

Death within a day of 0.0074 0.0079 0.0107 0.0081 −0.0052
transplant for prior surgery (0.0036)∗∗ (0.0036)∗∗ (0.0046)∗∗ (0.0062) (0.0075)

On life support 0.0153 0.0310 0.0607 0.0932
(0.0018)∗∗∗ (0.0028)∗∗∗ (0.0038)∗∗∗ (0.0057)∗∗∗

Re-transplant 0.0113 0.0187 0.0547 0.1094
(0.0015)∗∗∗ (0.0022)∗∗∗ (0.0037)∗∗∗ (0.0052)∗∗∗

Living donor −0.0069 −0.0088 −0.0062 −0.0041
(0.0011)∗∗∗ (0.0015)∗∗∗ (0.0023)∗∗∗ (0.0050)

Age of patient 0.0002 0.0002 0.0006 0.0018
(0.0000)∗∗∗ (0.0000)∗∗∗ (0.0001)∗∗∗ (0.0001)∗∗∗

Age of donor 0.0001 0.0001 0.0002 0.0007
(0.0000)∗∗∗ (0.0000)∗∗ (0.0000)∗∗∗ (0.0001)∗∗∗

HCV −0.0029 −0.0034 −0.0096 0.0106
(0.0009)∗∗∗ (0.0011)∗∗∗ (0.0014)∗∗∗ (0.0035)∗∗∗

Alcoholic cirrhosis −0.0026 −0.0043 −0.0064 −0.0105
(0.0011)∗∗ (0.0014)∗∗∗ (0.0022)∗∗∗ (0.0033)∗∗∗

HCC −0.0038 −0.0050 −0.0115 0.0005
(0.0012)∗∗∗ (0.0014)∗∗∗ (0.0021)∗∗∗ (0.0041)

White −0.0002 0.0009 0.0036 0.0120
(0.0014) (0.0018) (0.0026) (0.0045)∗∗∗

African American 0.0004 0.0010 0.0021 0.0168
(0.0015) (0.0023) (0.0036) (0.0050)∗∗∗

Hispanic −0.0014 0.0003 0.0004 −0.0014
(0.0015) (0.0019) (0.0032) (0.0045)

Female 0.0011 0.0015 0.0004 −0.0025
(0.0006)∗ (0.0009)∗ (0.0013) (0.0021)

Year effects Yes Yes Yes Yes Yes
Center effects Yes Yes Yes Yes Yes
Clusters 154 154 154 154 154
R2 0.005 0.009 0.015 0.029 0.042
Observations 111,619 111,599 111,599 111,599 111,599

Notes. Parentheses contain standard errors clustered at the center level. Data comes from the United Network for Organ Sharing for 1989–2011,
including all centers in the sample.
∗, ∗∗, and ∗∗∗indicate significance at the 10%, 5%, and 1% confidence levels, respectively.

problem: exploiting the high-frequency nature of the
liver transplant data set. Instead of using the variable
Cumulative single day deaths, which measures the total
number of such deaths at the center over its history,
we use an indicator of whether the prior transplant
resulted in the patient dying within a day:9

(Die within a day of transplant)i , t
� α+ β1 · (Death within a day of transplant)i , t−1
+ηXi , t + ei , t . (5)

In columns 1 and 2 of Table 5, we find that, if anything,
a death within a day of the prior transplant patient is
positively correlated with whether the current patient
dies within a day of transplant. Given the baseline
probability of death within a day of transplant of
1.18%, a 0.74% increase in the death probability implies
an increased risk of death of approximately 70%. The
standard errors are large, however. The probability of
immediate death following another immediate death
could be anywhere between 1% and 2.5%. We find
similar results in column 3, but much less significant

results as the measure of mortality becomes broader in
columns 4 and 5.

In Figure 8, we expand on specification 5 by calculat-
ing coefficients on whether there was a death within a
day during each of the 10 previous transplants:

(Die within a day of transplant)i , t
�α+ β1 · (Death within a day of transplant)i , t−1 + · · ·
+β10 · (Death within a day of transplant)i , t−10
+ ηXi , t + ei , t .

Using the specification in column 2 of Table 5, we
find that, in general, prior failures other than the fail-
ure of the immediately preceding surgery do not have
an association with future success. Consistent with
the findings of Tucker and Edmondson (2003) and
Edmondson (2011), the transplant data presents little
evidence of learning from failure.

Discussion
The main goal of this manuscript is to contribute to the
strategy research community’s attempt to understand
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Figure 8. (Color online) Coefficients on Failure in the
Previous 10 Transplants
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Notes. 95% confidence intervals with standard errors clustered at the
center level shown in dashes. These results follow from the specifi-
cation:

(Die within a day of transplant)i , t
� α+ β1 · [(Previous surgery)−1: (Die within a day)i]

+ β2 · [(Previous surgery)−2: (Die within a day)i]+ · · ·
+ β10 · [(Previous surgery)−10: (Die within a day)i]
+ γ · (controls, center, and year effects)i , t + εi , t

This closely follows column 2 of Table 4, except lagged previous
surgeries are included. The findings suggest that the effect of a death
in the last surgery may predict a death in the present surgery, but
more distant failures are not correlated with current outcomes.

learning from failure. Taking a step back, onemain rea-
son for wanting to understand learning from failure
is to provide normative recommendations on deliber-
ate strategic actions that firms can take to help indi-
vidual employees learn frommistakes, or to learn from
mistakes at the organizational level. Given that, we
propose that researchers studying learning from fail-
ure follow a technique long-used in strategy literature
to study the performance implications of management
practices: to investigate differences in the elasticity of
performance to environmental features as a function
of management practices. For example, Bennett (2013)
investigates the elasticity of prices negotiated by a car
dealership to the willingness of the customers to pay as
a function of staffing practices. A practice that increases
the elasticity of price to willingness to pay is one that
increases the proportion of value created that the firm
can capture. In a learning setting, this could translate
to regressing likelihood of success on count of fail-
ures and an interaction with an indicator for organiza-
tional practice. The coefficient on the interaction could
be interpreted as a measure of whether the practice
improves learning from failure. This empirical strategy
does not have the aforementioned problems as long
as count of successes is not also included. A num-
ber of articles have been written on practices organiza-
tions can implement to learn from their failures (Desai
2016, Edmondson 2011, Sitkin 1992). A possibly even

larger body of literature, however, details the imped-
iments that keep organizations from learning from
failure (e.g., Baumard and Starbuck 2005, Haunschild
and Sullivan 2002, Kim et al. 2009, Tucker and
Edmondson 2003).

Conclusion
We contribute to reconciling archival results suggest-
ing significant organizational learning from failure
with qualitative results suggesting that very little such
learning occurs. We find that a standard empirical
specification used for testing learning from failure has
two structural problems that can lead to biased coeffi-
cients and biased significance tests. Our results suggest
that caution is needed when interpreting the litera-
ture’s prior results.

The empirical issues with both the tests and the coef-
ficients using the standard specification are certainly
not the only possible explanations for the divergence
between the econometric and qualitative research. It is
entirely possible that differences in the settings or any
number of other factors may be involved. These results
do not suggest that learning from failure is not hap-
pening, but rather that we should interpret results of
the standard specification with care.

Suggesting issues with the standard approach to
studying learning from failure raises the question of
what is the correct way to estimate learning from fail-
ure. Unfortunately, there is not an obvious answer.
To the best of our knowledge, the issues raised have
not been discussed in the econometric literature and
the finite sample properties of some of the candidate
estimators are not well understood. While we hope
future econometric research yields consistent unbiased
estimators, we are not left without options for current
research.

Our paper shows some initial attempts at bias-free
tests of the learning-from-failure hypothesis. We hope
that future studies develop these approaches further
to provide a more robust understanding of a criti-
cal human and organizational phenomenon: learning
from failure.

We propose an option for studying learning from
failure: using a sliding window of a theory-driven con-
stant length for the regressor so that the error variance
is constant.
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Appendix

Figure A.1. (Color online) Average t-Statistic on Failure and
Success Parameters from 1,000 Random Data Sets with 50
Different Baseline Failure Rates
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Notes. t-statistics for robust standard errors at the 95% confidence
interval shown. These results follow from the specification:

(Die within a day of transplant)t � α+ β1 · (Cumulative successes)t

+ β2 · (Cumulative failures)t + εt

This closely follows column 2 of Table 2. The findings suggest that, if
anything, larger baseline failure rates increase the average t-statistic
on both cumulative failures and cumulative successes.

Figure A.2. (Color online) Average t-Statistic on Failure and
Success Parameters from 1,000 Random Data Sets with
Different Sample Sizes
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Notes. t-statistics for robust standard errors at the 95% confidence
interval shown. These results follow from the specification:

(Die within a day of transplant)t � α+ β1 · (Cumulative successes)t

+ β2 · (Cumulative failures)t + εt

This closely follows column 2 of Table 2. The findings suggest
that the order of magnitude does not determine the size of the
t-statistic.

Table A.1. Results with Alternative Specifications on
Placebo vs. Actual Transplant Data

Dependent variable:
Die within a day of transplant

Placebo data Real data

Independent
variable (1) (2) (3) (4)

Cumulative single −0.1015 −0.3532 −0.0932 −0.1782
day deaths (in (0.0328)∗∗∗ (0.0627)∗∗∗ (0.230)∗∗∗ (0.0006)∗∗∗
100s of patients)

Age of center 0.0007 0.0005
(0.0002)∗∗∗ (0.0002)∗∗

Cumulative total 0.0040 0.0018
transplants (in (0.0008)∗∗∗ (0.0007)∗∗∗
100s of patients)

Individual controls Yes Yes Yes Yes
Year effects No Yes No Yes
Center effects Yes Yes Yes Yes
Clusters 99 99 99 99
Observations 41,704 41,704 41,704 41,704

Notes. Parentheses contain standard errors clustered at the center
level. Data comes from the United Network for Organ Sharing for
1989–2011. Observations restricted to centers that started in 1989 or
later to avoid left-hand-side censoring for the cumulative variables.
Placebo data randomly assigns the dependent variable with proba-
bility 1.18%, which is the overall probability that a patient will die
within one day for the subsample of centers that started in 1989 or
later. This process was iterated 1,000 times and the average parame-
ter estimates and standard errors are in the first two columns.
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% confidence

levels, respectively.

Endnotes
1A notable exception is Staats and Gino (2013), who find almost
exactly the opposite at the individual level. They suggest that indi-
vidual surgeons’ future success is positively influenced by their past
cumulative number of successes and negatively influenced by their
past cumulative number of failures.
2We follow the statistics and econometrics literatures and use the
term “placebo data” to describe randomly generated data where the
effect is absent by design.
3This approach is analogous to the first-differencing approach rec-
ommended in the time-series literature.
4See code for seeds used and procedures for randomization.
5The Z(t) statistics from the augmented Dickey-Fuller test for the
cumulative success and cumulative failure series are −0.142 and
−0.087, respectively. These values are well below the five-percent
critical value of −2.86, indicating that we cannot reject the null that
the series has a unit root.
6 In unreported regressions, we estimated a variant of the standard
specification inwhich either cumulative successes or cumulative fail-
ures are included—but not both—along with the number of trials or
the organization’s age as in, for example, Desai (2016), Haunschild
and Sullivan (2002), and Ingram and Baum (1997). These results are
in appendix Table A.1. The results are qualitatively the same.
7We show in Figures A.1 and A.2 that these results on the simulation
are robust to alternative baseline models.
8 If two transplants occurred on the same day, we code “Die within
a day of transplant” for the prior surgery as 1 if either patient died
within a day of transplant.
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9Note that counting a surgery as a failure if the patient died within
a day is a conservative measure. In Table 5, we show results for
alternate definitions of failure, ranging from patients dying within a
day to patients dying within a year.
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